author  paulson 
Wed, 20 Aug 2003 11:04:17 +0200  
changeset 14156  2072802ab0e3 
parent 14085  8dc3e532959a 
child 15019  acf67fa30998 
permissions  rwrr 
9487  1 
(* Title: FOL/FOL.thy 
2 
ID: $Id$ 

3 
Author: Lawrence C Paulson and Markus Wenzel 

11678  4 
*) 
9487  5 

11678  6 
header {* Classical firstorder logic *} 
4093  7 

7355
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

8 
theory FOL = IFOL 
9487  9 
files 
10 
("FOL_lemmas1.ML") ("cladata.ML") ("blastdata.ML") 

11 
("simpdata.ML") ("FOL_lemmas2.ML"): 

12 

13 

14 
subsection {* The classical axiom *} 

4093  15 

7355
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

16 
axioms 
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

17 
classical: "(~P ==> P) ==> P" 
4093  18 

9487  19 

11678  20 
subsection {* Lemmas and proof tools *} 
9487  21 

7355
4c43090659ca
proper bootstrap of IFOL/FOL theories and packages;
wenzelm
parents:
5887
diff
changeset

22 
use "FOL_lemmas1.ML" 
12127
219e543496a3
theorems case_split = case_split_thm [case_names True False, cases type: o];
wenzelm
parents:
11988
diff
changeset

23 
theorems case_split = case_split_thm [case_names True False, cases type: o] 
9525  24 

10383  25 
use "cladata.ML" 
26 
setup Cla.setup 

14156  27 
setup cla_setup 
28 
setup case_setup 

10383  29 

9487  30 
use "blastdata.ML" 
31 
setup Blast.setup 

13550  32 

33 

34 
lemma ex1_functional: "[ EX! z. P(a,z); P(a,b); P(a,c) ] ==> b = c" 

35 
by blast 

36 

37 
ML {* 

38 
val ex1_functional = thm "ex1_functional"; 

39 
*} 

9487  40 

41 
use "simpdata.ML" 

42 
setup simpsetup 

43 
setup "Simplifier.method_setup Splitter.split_modifiers" 

44 
setup Splitter.setup 

45 
setup Clasimp.setup 

46 

14085  47 
subsection {* Other simple lemmas *} 
48 

49 
lemma [simp]: "((P>R) <> (Q>R)) <> ((P<>Q)  R)" 

50 
by blast 

51 

52 
lemma [simp]: "((P>Q) <> (P>R)) <> (P > (Q<>R))" 

53 
by blast 

54 

55 
lemma not_disj_iff_imp: "~P  Q <> (P>Q)" 

56 
by blast 

57 

58 
(** Monotonicity of implications **) 

59 

60 
lemma conj_mono: "[ P1>Q1; P2>Q2 ] ==> (P1&P2) > (Q1&Q2)" 

61 
by fast (*or (IntPr.fast_tac 1)*) 

62 

63 
lemma disj_mono: "[ P1>Q1; P2>Q2 ] ==> (P1P2) > (Q1Q2)" 

64 
by fast (*or (IntPr.fast_tac 1)*) 

65 

66 
lemma imp_mono: "[ Q1>P1; P2>Q2 ] ==> (P1>P2)>(Q1>Q2)" 

67 
by fast (*or (IntPr.fast_tac 1)*) 

68 

69 
lemma imp_refl: "P>P" 

70 
by (rule impI, assumption) 

71 

72 
(*The quantifier monotonicity rules are also intuitionistically valid*) 

73 
lemma ex_mono: "(!!x. P(x) > Q(x)) ==> (EX x. P(x)) > (EX x. Q(x))" 

74 
by blast 

75 

76 
lemma all_mono: "(!!x. P(x) > Q(x)) ==> (ALL x. P(x)) > (ALL x. Q(x))" 

77 
by blast 

78 

11678  79 

80 
subsection {* Proof by cases and induction *} 

81 

82 
text {* Proper handling of nonatomic rule statements. *} 

83 

84 
constdefs 

85 
induct_forall :: "('a => o) => o" 

86 
"induct_forall(P) == \<forall>x. P(x)" 

87 
induct_implies :: "o => o => o" 

88 
"induct_implies(A, B) == A > B" 

89 
induct_equal :: "'a => 'a => o" 

90 
"induct_equal(x, y) == x = y" 

91 

92 
lemma induct_forall_eq: "(!!x. P(x)) == Trueprop(induct_forall(\<lambda>x. P(x)))" 

93 
by (simp only: atomize_all induct_forall_def) 

94 

95 
lemma induct_implies_eq: "(A ==> B) == Trueprop(induct_implies(A, B))" 

96 
by (simp only: atomize_imp induct_implies_def) 

97 

98 
lemma induct_equal_eq: "(x == y) == Trueprop(induct_equal(x, y))" 

99 
by (simp only: atomize_eq induct_equal_def) 

100 

11988  101 
lemma induct_impliesI: "(A ==> B) ==> induct_implies(A, B)" 
102 
by (simp add: induct_implies_def) 

103 

12164
0b219d9e3384
induct_atomize: include atomize_conj (for mutual induction);
wenzelm
parents:
12160
diff
changeset

104 
lemmas induct_atomize = atomize_conj induct_forall_eq induct_implies_eq induct_equal_eq 
0b219d9e3384
induct_atomize: include atomize_conj (for mutual induction);
wenzelm
parents:
12160
diff
changeset

105 
lemmas induct_rulify1 [symmetric, standard] = induct_forall_eq induct_implies_eq induct_equal_eq 
11678  106 
lemmas induct_rulify2 = induct_forall_def induct_implies_def induct_equal_def 
107 

12240  108 
lemma all_conj_eq: "(ALL x. P(x)) & (ALL y. Q(y)) == (ALL x y. P(x) & Q(y))" 
109 
by simp 

110 

11678  111 
hide const induct_forall induct_implies induct_equal 
112 

113 

114 
text {* Method setup. *} 

115 

116 
ML {* 

117 
structure InductMethod = InductMethodFun 

118 
(struct 

119 
val dest_concls = FOLogic.dest_concls; 

120 
val cases_default = thm "case_split"; 

11988  121 
val local_impI = thm "induct_impliesI"; 
11678  122 
val conjI = thm "conjI"; 
123 
val atomize = thms "induct_atomize"; 

124 
val rulify1 = thms "induct_rulify1"; 

125 
val rulify2 = thms "induct_rulify2"; 

12240  126 
val localize = [Thm.symmetric (thm "induct_implies_def"), 
127 
Thm.symmetric (thm "atomize_all"), thm "all_conj_eq"]; 

11678  128 
end); 
129 
*} 

130 

131 
setup InductMethod.setup 

132 

4854  133 
end 